ISSN: 2960-1959
Publisher
Review Articles

The Role of G1/S Phase Cyclins in Colorectal Cancer: A Review

Department of Medical Biology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
Department of Medical Biology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
College of Medicine, University of Sulaimani, Madam Mitterrand Street, Sulaimani, Kurdistan, Iraq
Smart Health Tower, Madam Mitterrand Street, Sulaimani, Kurdistan, Iraq
Smart Health Tower, Scientific Affairs Department, Madam Mitterrand Street, Sulaimani, Kurdistan, Iraq
Kscien Organization for Scientific Research (Middle East office), Hamid Str, Azadi Mall, Sulaimani, Kurdstan, Iraq
Kscien Organization for Scientific Research (Middle East office), Hamid Str, Azadi Mall, Sulaimani, Kurdstan, Iraq
Smart Health Tower, Madam Mitterrand Street, Sulaimani, Kurdistan, Iraq
Kscien Organization for Scientific Research (Europe office), Verboomstraat 175b, 3082 jj Rotterdam, Netherlands

Abstract

Colorectal cancer is a highly prevalent cancer with a high mortality rate. Although the colorectal carcinogenesis mechanism is not fully understood yet, it has been proven that most cancers result from the accumulation of genetic mutations, mostly in the genes responsible for cell cycle regulation, leading to uncontrolled and excessive cell growth. Hence, cyclins may have a significant role in cancer development and progression. Although many studies have been carried out on the expression of these cyclin proteins to indicate their role in colorectal cancer development and their correlation with patient outcome, the currently available data is quite controversial; thus, no certain conclusions can be made. This review article summarizes current knowledge regarding the role of G1/S cyclins, such as cyclin D, E, and A, in colorectal cancer and discusses their potential as prognostic biomarkers and therapeutic targets. Hence, it may provide the groundwork for future research.

References

  1. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PloS one. 2011;6(6):e20456. doi:10.1371/journal.pone.0020456
  2. Wang Y, Xue J, Kuang H, Zhou X, Liao L, Yin F. microRNA-1297 inhibits the growth and metastasis of colorectal cancer by suppressing cyclin D2 expression. DNA and cell biology. 2017;36(11):991-9. doi: 10.1089/dna.2017.3829
  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209-49. doi:10.3322/caac.21492
  4. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-91. doi:10.1136/gutjnl-2015-310912
  5. Global Cancer Observatory Cancer Today. Available online at: https://gco.iarc.fr/ (accessed March 24, 2023).
  6. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70(3):145-64. doi:10.3322/caac.21708
  7. Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology. 2020;158(2):291-302. doi:10.1053/j.gastro.2019.08.059
  8. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA oncology. 2017;3(4):464-71. doi:10.1001/jamaoncol.2016.5194
  9. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147(2):502-26. doi:10.1053/j.gastro.2014.04.001
  10. Li W, Zhang G, Wang HL, Wang L. Analysis of expression of cyclin E, p27kip1 and Ki67 protein in colorectal cancer tissues and its value for diagnosis, treatment and prognosis of disease. Eur Rev Med Pharmacol Sci. 2016;20(23):4874-9. doi:N/A
  11. Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, et al. Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC gastroenterology. 2004;4(1):22. doi:10.1186/1471-230X-4-22
  12. Oren M, Tal P, Rotter V. Targeting mutant p53 for cancer therapy. Aging (Albany NY). 2016;8(6):1159. doi:10.18632%2Faging.100992
  13. Cvrčková F. A brief history of eukaryotic cell cycle research. InConcepts in Cell Biology-History and Evolution 2018 (pp. 67-93). Springer, Cham. doi:10.1007/978-3-319-69944-8_4
  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013
  15. Malumbres M. Cell cycle-based therapies move forward. Cancer Cell. 2012;22(4):419-20. doi:10.1016/j.ccr.2012.09.024
  16. Wang J, Wang Q, Cui Y, Liu ZY, Zhao W, Wang CL, et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. Journal of Neuro-oncology. 2012;106(3):473-84. doi:10.1007/s11060-011-0692-4
  17. Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. InSeminars in Cell & Developmental Biology 2020 (Vol. 107, pp. 28-35). Academic Press. doi:10.1016/j.semcdb.2020.03.009
  18. Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell cycle. 2015;14(12):1786-98. doi:10.1080/15384101.2014.998085
  19. Dulińska-Litewka J, Felkle D, Dykas K, Handziuk Z, Krzysztofik M, Gąsiorkiewicz B. The role of cyclins in the development and progression of prostate cancer. Biomedicine & Pharmacotherapy. 2022; 155:113742. doi:10.1016/j.biopha.2022.113742
  20. Malumbres M. Cyclin-dependent kinases. Genome biology. 2014;15(6):122. doi:10.1186/gb4184
  21. Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nature reviews Molecular cell biology. 2016;17(5):280. doi:10.1038/nrm.2016.27
  22. Yang VW. The cell cycle. In Physiology of the Gastrointestinal Tract 2018 (pp. 197-219). Academic Press. doi:10.1016/B978-0-12-809954-4.00008-6
  23. Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends in cell biology. 2013;23(7):345-56. doi:10.1016/j.tcb.2013.03.002
  24. Diril MK, Ratnacaram CK, Padmakumar VC, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proceedings of the National Academy of Sciences. 2012;109(10):3826-31. doi:10.1073/pnas.1115201109
  25. Matthews HK, Bertoli C, de Bruin RA. Cell cycle control in cancer. Nature Reviews Molecular Cell Biology. 2022;23(1):74-88. doi:10.1038/s41580-021-00404-3
  26. Fusté NP, Ferrezuelo F, Garí E. Cyclin D1 promotes tumor cell invasion and metastasis by cytoplasmic mechanisms. Molecular & Cellular Oncology. 2016;3(5):e1203471. doi:10.1080/23723556.2016.1203471
  27. Alves MR, e Melo NC, Barros‐Filho MC, do Amaral NS, Silva FI, Baiocchi Neto G, et al. Downregulation of AGR 2, p21, and cyclin D and alterations in p53 function were associated with tumor progression and chemotherapy resistance in epithelial ovarian carcinoma. Cancer medicine. 2018;7(7):3188-99. doi:10.1002/cam4.1530
  28. Wang Q shui, Li F, Liao Z qiang, Li K, Yang X liu, Lin Y yu, et al. Low level of Cyclin-D1 correlates with worse prognosis of clear cell renal cell carcinoma patients. Cancer Med. 2019;8(9):4100–9. doi:10.1002/cam4.2313
  29. Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PloS one. 2017;12(11):e0188068. doi:10.1371/journal.pone.0188068
  30. Fang L, Xu X, Zheng W, Wu L, Wan H. The expression of microRNA-340 and cyclin D1 and its relationship with the clinicopathological characteristics and prognosis of lung cancer. Asian Journal of Surgery. 2021;44(11):1363-9. doi:10.1016/j.asjsur.2021.02.009
  31. Wang S, Wang K, Deng Z, Jiang Z, Wang D, Yao Y, et al. Correlation between the protein expression levels of A‐kinase anchor protein95, p‐retinoblastoma (Ser780), cyclin D2/3, and cyclin E2 in esophageal cancer tissues. Asia‐Pacific Journal of Clinical Oncology. 2019;15(5):e162-6. doi:10.1111/ajco.13146
  32. Ramos-García P, González-Moles MÁ, González-Ruiz L, Ayén Á, Ruiz-Ávila I, Bravo M, et al. Clinicopathological significance of tumor cyclin D1 expression in oral cancer. Archives of Oral Biology. 2019;99:177-82. doi:10.1016/j.archoralbio.2019.01.018
  33. Ding ZY, Li R, Zhang QJ, Wang Y, Jiang Y, Meng QY, et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta‐analysis. Cancer medicine. 2019;8(6):2717-29. doi:10.1002/cam4.2152
  34. Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC, et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncology letters. 2017;14(4):4517-26. doi:10.3892/ol.2017.6736
  35. Pereira BJ, de Santana Junior PA, de Almeida AN, Cavalcante SG, de Melo KC, de Aguiar PH, da et al. Cyclin E1 expression and malignancy in meningiomas. Clinical neurology and neurosurgery. 2020;190:105647. doi:10.1016/j.clineuro.2019.105647
  36. Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K, et al. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2010;116(11):2621-34. doi: 10.1002/cncr.24987
  37. Wei R, Thanindratarn P, Dean DC, Hornicek FJ, Guo W, Duan Z. Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. Journal of Orthopaedic Research®. 2020;38(9):1952-64. doi:10.1002/jor.24659
  38. Lockwood WW, Stack D, Morris T, Grehan D, O'Keane C, Stewart GL, et al. Cyclin E1 is amplified and overexpressed in osteosarcoma. The Journal of Molecular Diagnostics. 2011;13(3):289-96. doi:10.1016/j.jmoldx.2010.11.020
  39. Aamodt R, Jonsdottir K, Andersen SN, Bondi J, Bukholm G, Bukholm IR. Differences in protein expression and gene amplification of cyclins between colon and rectal adenocarcinomas. Gastroenterology research and practice. 2009;1(1):1-9. doi:10.1155/2009/285830
  40. Husdal A, Bukholm G, Bukholm IR. The prognostic value and overexpression of cyclin A is correlated with gene amplification of both cyclin A and cyclin E in breast cancer patient. Analytical Cellular Pathology. 2006;28(3):107-16. doi:N/A
  41. Kosacka M, Piesiak P, PORĘBSKA I, Korzeniewska A, Dyla T, Jankowska R. Cyclin A and Cyclin E expression in resected non-small cell lung cancer stage I-IIIA. in vivo. 2009;23(4):519-25. doi:N/A
  42. Brcic L, Heidinger M, Sever AZ, Zacharias M, Jakopovic M, Fediuk M, et al. Prognostic value of cyclin A2 and B1 expression in lung carcinoids. Pathology. 2019;51(5):481-6. doi:10.1016/j.pathol.2019.03.011
  43. Gurzov EN, Izquierdo M. Cyclin E1 knockdown induces apoptosis in cancer cells. Neurological research. 2006;28(5):493-9. doi:10.1179/016164106X115143
  44. Sánchez I, Dynlacht BD. New insights into cyclins, CDKs, and cell cycle control. InSeminars in cell & developmental biology 2005 (Vol. 16, No. 3, pp. 311-321). Academic Press. doi:10.1016/j.semcdb.2005.02.007
  45. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews cancer. 2009;9(3):153-66. doi:10.1038/nrc2602
  46. Wagner V, Gil J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene. 2020;39(29):5165-76. doi:10.1038/s41388-020-1354-9
  47. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nature Reviews Cancer. 2015;15(3):166-80. doi:10.1038/nrc3891
  48. Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J, et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nature communications. 2017;8(1):14728. doi:10.1038/ncomms14728
  49. Shiohara M, Koike K, Komiyama A, Koeffler HP. p21WAF1 mutations and human malignancies. Leukemia & lymphoma. 1997;26(1-2):35-41. doi:10.3109/10428199709109155
  50. Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. Journal of hematology & oncology. 2020;13(1):1-7. doi:10.1186/s13045-020-00959-2
  51. Li Y, Wei J, Xu C, Zhao Z, You T. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PloS one. 2014;9(4):e94508. doi:10.1371/journal.pone.0094508
  52. Qiu H, Cheng C, Wang Y, Kang M, Tang W, Chen S, et al. Investigation of cyclin D1 rs9344 G> A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects. OncoTargets and therapy. 2016:6641-50. doi:10.1371/journal.pone.0094508
  53. Xie M, Zhao F, Zou X, Jin S, Xiong S. The association between CCND1 G870A polymorphism and colorectal cancer risk: A meta-analysis. Medicine. 2017;96(42). doi:0.1097/MD.0000000000008269
  54. Huang CY, Tsai CW, Hsu CM, Chang WS, Shui HA, Bau DT. The significant association of CCND1 genotypes with colorectal cancer in Taiwan. Tumor biology. 2015;36:6533-40. doi:10.1007/s13277-015-3347-9
  55. Govatati S, Singamsetty GK, Nallabelli N, Malempati S, Rao PS, Madamchetty VK, et al. Contribution of cyclin D1 (CCND1) and E-cadherin (CDH1) alterations to colorectal cancer susceptibility: a case–control study. Tumor Biology. 2014;35:12059-67. doi:10.1007/s13277-014-2505-9
  56. Mohamed SY, Hafez A, Elwan A, Abdelhamid MI, Ahmed NH, Abdelmaksoud BA, et al. Prognostic Value of IMP3 and Cyclin D1 Expression in Patients with Colorectal Cancer. Middle East Journal of Cancer. 2022;13(1):57-66. doi:10.30476/mejc.2021.85085.1258
  57. Roshdy RG, Said EM. Expression and prognostic significance of cyclin D1 and cyclooxygenase-2 in colorectal carcinoma: An immunohistochemical study. Egyptian Journal of Pathology. 2022;42(1):44. doi:10.4103/egjp.egjp_10_22
  58. Kitamura H, Takemura H, Minamoto T. Tumor p16INK4 gene expression and prognosis in colorectal cancer. Oncology reports. 2019;41(2):1367-76. doi:10.3892/or.2018.6884
  59. Jun SY, Kim J, Yoon N, Maeng LS, Byun JH. Prognostic Potential of Cyclin D1 Expression in Colorectal Cancer. Journal of Clinical Medicine. 2023;12(2):572. doi:10.3390/jcm12020572
  60. Saputra E, Rahaju AS. The correlation of the expression of PD-L1 and Cyclin D1 with histopathological grading in colorectal adenocarcinoma. International Journal of Health Sciences. 2022;6:1257-68. doi:10.53730/ijhs.v6nS6.10630
  61. Sharma N, Singh T, Kaur A, Manjari M, Bashir S. Cyclin D1 expression and its correlation with clinicopathological variables in colorectal carcinoma. Journal of Pathology of Nepal. 2021;11(1):1868-72. doi:10.3126/jpn.v11i1.29291
  62. Cheasley D, Pereira L, Sampurno S, Sieber O, Jorissen R, Xu H, et al. Defective Myb function ablates cyclin E1 expression and perturbs intestinal carcinogenesis. Molecular cancer research. 2015;13(8):1185-96. doi10.1158/1541-7786.MCR-15-0014
  63. Guo Y, Gabola M, Lattanzio R, Paul C, Pinet V, Tang R, et al. Loss of cyclin A2 in murine colonic epithelial cells disrupts colon homeostasis by triggering DNA damage and dysplasia and high cyclin A2 expression is a good-prognosis factor in patients with colorectal cancer. bioRxiv. 2019:690404. doi:10.1101/690404
  64. Guo Y, Gabola M, Lattanzio R, Paul C, Pinet V, Tang R, et al. Cyclin A2 maintains colon homeostasis and is a prognostic factor in colorectal cancer. The Journal of clinical investigation. 2021;131(4). doi:10.1172/JCI131517
  65. Arsic N, Bendris N, Peter M, Begon-Pescia C, Rebouissou C, Gadéa G, et al. A novel function for Cyclin A2: control of cell invasion via RhoA signaling. Journal of Cell Biology. 2012;196(1):147-62. doi:10.1083/jcb.201102085
  66. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer treatment reviews. 2016;45:129-38. doi:10.1016/j.ctrv.2016.03.002
  67. Heptinstall AB, Adiyasa IW, Cano C, Hardcastle IR. Recent advances in CDK inhibitors for cancer therapy. Future Medicinal Chemistry. 2018;10(11):1369-88. doi:10.4155/fmc-2017-0246
  68. Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS. Drug rechallenge and treatment beyond progression—implications for drug resistance. Nature reviews Clinical oncology. 2013;10(10):571-87. doi:10.1038/nrclinonc.2013.158

Send mail to Author


Send Cancel
Themes by Openjournaltheme.com